\(\int x^2 \sqrt {a+b \arcsin (c x)} \, dx\) [173]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [F(-2)]
   Sympy [F]
   Maxima [F]
   Giac [C] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 16, antiderivative size = 242 \[ \int x^2 \sqrt {a+b \arcsin (c x)} \, dx=\frac {1}{3} x^3 \sqrt {a+b \arcsin (c x)}-\frac {\sqrt {b} \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{4 c^3}+\frac {\sqrt {b} \sqrt {\frac {\pi }{6}} \cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{12 c^3}+\frac {\sqrt {b} \sqrt {\frac {\pi }{2}} \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{4 c^3}-\frac {\sqrt {b} \sqrt {\frac {\pi }{6}} \operatorname {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right ) \sin \left (\frac {3 a}{b}\right )}{12 c^3} \]

[Out]

1/72*cos(3*a/b)*FresnelS(6^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*b^(1/2)*6^(1/2)*Pi^(1/2)/c^3-1/72*F
resnelC(6^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*sin(3*a/b)*b^(1/2)*6^(1/2)*Pi^(1/2)/c^3-1/8*cos(a/b)
*FresnelS(2^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*b^(1/2)*2^(1/2)*Pi^(1/2)/c^3+1/8*FresnelC(2^(1/2)/
Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*sin(a/b)*b^(1/2)*2^(1/2)*Pi^(1/2)/c^3+1/3*x^3*(a+b*arcsin(c*x))^(1/2
)

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 242, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {4725, 4809, 3393, 3387, 3386, 3432, 3385, 3433} \[ \int x^2 \sqrt {a+b \arcsin (c x)} \, dx=\frac {\sqrt {\frac {\pi }{2}} \sqrt {b} \sin \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{4 c^3}-\frac {\sqrt {\frac {\pi }{6}} \sqrt {b} \sin \left (\frac {3 a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{12 c^3}-\frac {\sqrt {\frac {\pi }{2}} \sqrt {b} \cos \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{4 c^3}+\frac {\sqrt {\frac {\pi }{6}} \sqrt {b} \cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{12 c^3}+\frac {1}{3} x^3 \sqrt {a+b \arcsin (c x)} \]

[In]

Int[x^2*Sqrt[a + b*ArcSin[c*x]],x]

[Out]

(x^3*Sqrt[a + b*ArcSin[c*x]])/3 - (Sqrt[b]*Sqrt[Pi/2]*Cos[a/b]*FresnelS[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c*x]])/S
qrt[b]])/(4*c^3) + (Sqrt[b]*Sqrt[Pi/6]*Cos[(3*a)/b]*FresnelS[(Sqrt[6/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]])/(1
2*c^3) + (Sqrt[b]*Sqrt[Pi/2]*FresnelC[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]]*Sin[a/b])/(4*c^3) - (Sqrt[
b]*Sqrt[Pi/6]*FresnelC[(Sqrt[6/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]]*Sin[(3*a)/b])/(12*c^3)

Rule 3385

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[f*(x^2/d)],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3386

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[f*(x^2/d)], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3387

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3393

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 3432

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 3433

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 4725

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcSin[c*x])^n/(m
+ 1)), x] - Dist[b*c*(n/(m + 1)), Int[x^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 - c^2*x^2]), x], x] /; Fre
eQ[{a, b, c}, x] && IGtQ[m, 0] && GtQ[n, 0]

Rule 4809

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[(1/(b*c
^(m + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Subst[Int[x^n*Sin[-a/b + x/b]^m*Cos[-a/b + x/b]^(2*p + 1), x],
 x, a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && IGtQ[2*p + 2, 0] && IGtQ[m,
 0]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{3} x^3 \sqrt {a+b \arcsin (c x)}-\frac {1}{6} (b c) \int \frac {x^3}{\sqrt {1-c^2 x^2} \sqrt {a+b \arcsin (c x)}} \, dx \\ & = \frac {1}{3} x^3 \sqrt {a+b \arcsin (c x)}+\frac {\text {Subst}\left (\int \frac {\sin ^3\left (\frac {a}{b}-\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arcsin (c x)\right )}{6 c^3} \\ & = \frac {1}{3} x^3 \sqrt {a+b \arcsin (c x)}+\frac {\text {Subst}\left (\int \left (-\frac {\sin \left (\frac {3 a}{b}-\frac {3 x}{b}\right )}{4 \sqrt {x}}+\frac {3 \sin \left (\frac {a}{b}-\frac {x}{b}\right )}{4 \sqrt {x}}\right ) \, dx,x,a+b \arcsin (c x)\right )}{6 c^3} \\ & = \frac {1}{3} x^3 \sqrt {a+b \arcsin (c x)}-\frac {\text {Subst}\left (\int \frac {\sin \left (\frac {3 a}{b}-\frac {3 x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arcsin (c x)\right )}{24 c^3}+\frac {\text {Subst}\left (\int \frac {\sin \left (\frac {a}{b}-\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arcsin (c x)\right )}{8 c^3} \\ & = \frac {1}{3} x^3 \sqrt {a+b \arcsin (c x)}-\frac {\cos \left (\frac {a}{b}\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arcsin (c x)\right )}{8 c^3}+\frac {\cos \left (\frac {3 a}{b}\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {3 x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arcsin (c x)\right )}{24 c^3}+\frac {\sin \left (\frac {a}{b}\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arcsin (c x)\right )}{8 c^3}-\frac {\sin \left (\frac {3 a}{b}\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {3 x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arcsin (c x)\right )}{24 c^3} \\ & = \frac {1}{3} x^3 \sqrt {a+b \arcsin (c x)}-\frac {\cos \left (\frac {a}{b}\right ) \text {Subst}\left (\int \sin \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \arcsin (c x)}\right )}{4 c^3}+\frac {\cos \left (\frac {3 a}{b}\right ) \text {Subst}\left (\int \sin \left (\frac {3 x^2}{b}\right ) \, dx,x,\sqrt {a+b \arcsin (c x)}\right )}{12 c^3}+\frac {\sin \left (\frac {a}{b}\right ) \text {Subst}\left (\int \cos \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \arcsin (c x)}\right )}{4 c^3}-\frac {\sin \left (\frac {3 a}{b}\right ) \text {Subst}\left (\int \cos \left (\frac {3 x^2}{b}\right ) \, dx,x,\sqrt {a+b \arcsin (c x)}\right )}{12 c^3} \\ & = \frac {1}{3} x^3 \sqrt {a+b \arcsin (c x)}-\frac {\sqrt {b} \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{4 c^3}+\frac {\sqrt {b} \sqrt {\frac {\pi }{6}} \cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{12 c^3}+\frac {\sqrt {b} \sqrt {\frac {\pi }{2}} \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{4 c^3}-\frac {\sqrt {b} \sqrt {\frac {\pi }{6}} \operatorname {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right ) \sin \left (\frac {3 a}{b}\right )}{12 c^3} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.21 (sec) , antiderivative size = 227, normalized size of antiderivative = 0.94 \[ \int x^2 \sqrt {a+b \arcsin (c x)} \, dx=\frac {b e^{-\frac {3 i a}{b}} \left (9 e^{\frac {2 i a}{b}} \sqrt {-\frac {i (a+b \arcsin (c x))}{b}} \Gamma \left (\frac {3}{2},-\frac {i (a+b \arcsin (c x))}{b}\right )+9 e^{\frac {4 i a}{b}} \sqrt {\frac {i (a+b \arcsin (c x))}{b}} \Gamma \left (\frac {3}{2},\frac {i (a+b \arcsin (c x))}{b}\right )-\sqrt {3} \left (\sqrt {-\frac {i (a+b \arcsin (c x))}{b}} \Gamma \left (\frac {3}{2},-\frac {3 i (a+b \arcsin (c x))}{b}\right )+e^{\frac {6 i a}{b}} \sqrt {\frac {i (a+b \arcsin (c x))}{b}} \Gamma \left (\frac {3}{2},\frac {3 i (a+b \arcsin (c x))}{b}\right )\right )\right )}{72 c^3 \sqrt {a+b \arcsin (c x)}} \]

[In]

Integrate[x^2*Sqrt[a + b*ArcSin[c*x]],x]

[Out]

(b*(9*E^(((2*I)*a)/b)*Sqrt[((-I)*(a + b*ArcSin[c*x]))/b]*Gamma[3/2, ((-I)*(a + b*ArcSin[c*x]))/b] + 9*E^(((4*I
)*a)/b)*Sqrt[(I*(a + b*ArcSin[c*x]))/b]*Gamma[3/2, (I*(a + b*ArcSin[c*x]))/b] - Sqrt[3]*(Sqrt[((-I)*(a + b*Arc
Sin[c*x]))/b]*Gamma[3/2, ((-3*I)*(a + b*ArcSin[c*x]))/b] + E^(((6*I)*a)/b)*Sqrt[(I*(a + b*ArcSin[c*x]))/b]*Gam
ma[3/2, ((3*I)*(a + b*ArcSin[c*x]))/b])))/(72*c^3*E^(((3*I)*a)/b)*Sqrt[a + b*ArcSin[c*x]])

Maple [A] (verified)

Time = 0.13 (sec) , antiderivative size = 361, normalized size of antiderivative = 1.49

method result size
default \(-\frac {-9 \cos \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {2}\, \sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, \sqrt {a +b \arcsin \left (c x \right )}\, b -9 \sin \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {2}\, \sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, \sqrt {a +b \arcsin \left (c x \right )}\, b +\cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelS}\left (\frac {3 \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, b}\right ) \sqrt {2}\, \sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, \sqrt {a +b \arcsin \left (c x \right )}\, b +\sin \left (\frac {3 a}{b}\right ) \operatorname {FresnelC}\left (\frac {3 \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, b}\right ) \sqrt {2}\, \sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, \sqrt {a +b \arcsin \left (c x \right )}\, b +18 \arcsin \left (c x \right ) \sin \left (-\frac {a +b \arcsin \left (c x \right )}{b}+\frac {a}{b}\right ) b +18 \sin \left (-\frac {a +b \arcsin \left (c x \right )}{b}+\frac {a}{b}\right ) a -6 \arcsin \left (c x \right ) \sin \left (-\frac {3 \left (a +b \arcsin \left (c x \right )\right )}{b}+\frac {3 a}{b}\right ) b -6 \sin \left (-\frac {3 \left (a +b \arcsin \left (c x \right )\right )}{b}+\frac {3 a}{b}\right ) a}{72 c^{3} \sqrt {a +b \arcsin \left (c x \right )}}\) \(361\)

[In]

int(x^2*(a+b*arcsin(c*x))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/72/c^3/(a+b*arcsin(c*x))^(1/2)*(-9*cos(a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/
b)*2^(1/2)*Pi^(1/2)*(-1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)*b-9*sin(a/b)*FresnelC(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(
a+b*arcsin(c*x))^(1/2)/b)*2^(1/2)*Pi^(1/2)*(-1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)*b+cos(3*a/b)*FresnelS(3*2^(1/2
)/Pi^(1/2)/(-3/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*2^(1/2)*Pi^(1/2)*(-3/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)*b+sin
(3*a/b)*FresnelC(3*2^(1/2)/Pi^(1/2)/(-3/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*2^(1/2)*Pi^(1/2)*(-3/b)^(1/2)*(a+b
*arcsin(c*x))^(1/2)*b+18*arcsin(c*x)*sin(-(a+b*arcsin(c*x))/b+a/b)*b+18*sin(-(a+b*arcsin(c*x))/b+a/b)*a-6*arcs
in(c*x)*sin(-3*(a+b*arcsin(c*x))/b+3*a/b)*b-6*sin(-3*(a+b*arcsin(c*x))/b+3*a/b)*a)

Fricas [F(-2)]

Exception generated. \[ \int x^2 \sqrt {a+b \arcsin (c x)} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(x^2*(a+b*arcsin(c*x))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

Sympy [F]

\[ \int x^2 \sqrt {a+b \arcsin (c x)} \, dx=\int x^{2} \sqrt {a + b \operatorname {asin}{\left (c x \right )}}\, dx \]

[In]

integrate(x**2*(a+b*asin(c*x))**(1/2),x)

[Out]

Integral(x**2*sqrt(a + b*asin(c*x)), x)

Maxima [F]

\[ \int x^2 \sqrt {a+b \arcsin (c x)} \, dx=\int { \sqrt {b \arcsin \left (c x\right ) + a} x^{2} \,d x } \]

[In]

integrate(x^2*(a+b*arcsin(c*x))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*arcsin(c*x) + a)*x^2, x)

Giac [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.93 (sec) , antiderivative size = 1057, normalized size of antiderivative = 4.37 \[ \int x^2 \sqrt {a+b \arcsin (c x)} \, dx=\text {Too large to display} \]

[In]

integrate(x^2*(a+b*arcsin(c*x))^(1/2),x, algorithm="giac")

[Out]

1/8*sqrt(2)*sqrt(pi)*a*b*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(c
*x) + a)*sqrt(abs(b))/b)*e^(I*a/b)/((I*b^2/sqrt(abs(b)) + b*sqrt(abs(b)))*c^3) + 1/16*I*sqrt(2)*sqrt(pi)*b^2*e
rf(-1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(c*x) + a)*sqrt(abs(b))/b)*e
^(I*a/b)/((I*b^2/sqrt(abs(b)) + b*sqrt(abs(b)))*c^3) + 1/8*sqrt(2)*sqrt(pi)*a*b*erf(1/2*I*sqrt(2)*sqrt(b*arcsi
n(c*x) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(c*x) + a)*sqrt(abs(b))/b)*e^(-I*a/b)/((-I*b^2/sqrt(abs(b)
) + b*sqrt(abs(b)))*c^3) - 1/16*I*sqrt(2)*sqrt(pi)*b^2*erf(1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqrt(abs(b))
- 1/2*sqrt(2)*sqrt(b*arcsin(c*x) + a)*sqrt(abs(b))/b)*e^(-I*a/b)/((-I*b^2/sqrt(abs(b)) + b*sqrt(abs(b)))*c^3)
- 1/4*sqrt(pi)*a*sqrt(b)*erf(-1/2*sqrt(6)*sqrt(b*arcsin(c*x) + a)/sqrt(b) - 1/2*I*sqrt(6)*sqrt(b*arcsin(c*x) +
 a)*sqrt(b)/abs(b))*e^(3*I*a/b)/((sqrt(6)*b + I*sqrt(6)*b^2/abs(b))*c^3) - 1/24*I*sqrt(pi)*b^(3/2)*erf(-1/2*sq
rt(6)*sqrt(b*arcsin(c*x) + a)/sqrt(b) - 1/2*I*sqrt(6)*sqrt(b*arcsin(c*x) + a)*sqrt(b)/abs(b))*e^(3*I*a/b)/((sq
rt(6)*b + I*sqrt(6)*b^2/abs(b))*c^3) - 1/4*sqrt(pi)*a*sqrt(b)*erf(-1/2*sqrt(6)*sqrt(b*arcsin(c*x) + a)/sqrt(b)
 + 1/2*I*sqrt(6)*sqrt(b*arcsin(c*x) + a)*sqrt(b)/abs(b))*e^(-3*I*a/b)/((sqrt(6)*b - I*sqrt(6)*b^2/abs(b))*c^3)
 + 1/24*I*sqrt(pi)*b^(3/2)*erf(-1/2*sqrt(6)*sqrt(b*arcsin(c*x) + a)/sqrt(b) + 1/2*I*sqrt(6)*sqrt(b*arcsin(c*x)
 + a)*sqrt(b)/abs(b))*e^(-3*I*a/b)/((sqrt(6)*b - I*sqrt(6)*b^2/abs(b))*c^3) + 1/4*sqrt(pi)*a*erf(-1/2*sqrt(6)*
sqrt(b*arcsin(c*x) + a)/sqrt(b) - 1/2*I*sqrt(6)*sqrt(b*arcsin(c*x) + a)*sqrt(b)/abs(b))*e^(3*I*a/b)/((sqrt(6)*
sqrt(b) + I*sqrt(6)*b^(3/2)/abs(b))*c^3) - 1/4*sqrt(pi)*a*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqrt(abs(
b)) - 1/2*sqrt(2)*sqrt(b*arcsin(c*x) + a)*sqrt(abs(b))/b)*e^(I*a/b)/(c^3*(I*sqrt(2)*b/sqrt(abs(b)) + sqrt(2)*s
qrt(abs(b)))) - 1/4*sqrt(pi)*a*erf(1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arc
sin(c*x) + a)*sqrt(abs(b))/b)*e^(-I*a/b)/(c^3*(-I*sqrt(2)*b/sqrt(abs(b)) + sqrt(2)*sqrt(abs(b)))) + 1/4*sqrt(p
i)*a*erf(-1/2*sqrt(6)*sqrt(b*arcsin(c*x) + a)/sqrt(b) + 1/2*I*sqrt(6)*sqrt(b*arcsin(c*x) + a)*sqrt(b)/abs(b))*
e^(-3*I*a/b)/((sqrt(6)*sqrt(b) - I*sqrt(6)*b^(3/2)/abs(b))*c^3) + 1/24*I*sqrt(b*arcsin(c*x) + a)*e^(3*I*arcsin
(c*x))/c^3 - 1/8*I*sqrt(b*arcsin(c*x) + a)*e^(I*arcsin(c*x))/c^3 + 1/8*I*sqrt(b*arcsin(c*x) + a)*e^(-I*arcsin(
c*x))/c^3 - 1/24*I*sqrt(b*arcsin(c*x) + a)*e^(-3*I*arcsin(c*x))/c^3

Mupad [F(-1)]

Timed out. \[ \int x^2 \sqrt {a+b \arcsin (c x)} \, dx=\int x^2\,\sqrt {a+b\,\mathrm {asin}\left (c\,x\right )} \,d x \]

[In]

int(x^2*(a + b*asin(c*x))^(1/2),x)

[Out]

int(x^2*(a + b*asin(c*x))^(1/2), x)